Abstract

N. N. Bogolyubov discovered that the Boltzmann--Enskog kinetic equation has microscopic solutions. They have the form of sums of delta-functions and correspond to trajectories of individual hard spheres. But the rigorous sense of the product of the delta-functions in the collision integral was not discussed. Here we give a rigorous sense to these solutions by introduction of a special regularization of the delta-functions. The crucial observation is that the collision integral of the Boltzmann--Enskog equation coincides with that of the first equation of the BBGKY hierarchy for hard spheres if the special regularization to the delta-functions is applied. This allows to reduce the nonlinear Boltzmann--Enskog equation to the BBGKY hierarchy of linear equations in this particular case. Also we show that similar functions are exact smooth solutions for the recently proposed generalized Enskog equation. They can be referred to as ``particle-like'' or ``soliton-like'' solutions and are analogues of multisoliton solutions of the Korteweg--de Vries equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.