Abstract

The microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri was investigated using histological techniques and electron microscopy. The collar nerve ring is basically formed by circular nerve fibers originating from sensitive cells of tentacles. The dorsal nerve plexus principally consists of large motor neurons. It is shown for the first time that the sensitive collar nerve ring immediately passes into the motor dorsal nerve plexus. The basic components of the nervous system have similar cytoarchitectonics and a layered structure. The first layer is formed by numerous nerve fibers surrounded by the processes of glia-like cells. The bodies of glia-like cells constitute the second layer. The third layer consists of neuron bodies overarched by the bodies of epidermal cells. The giant nervous fiber is accompanied by more than one hundred nerve fibers of a common structure and, thus, marks the true longitudinal nerve. The phoronids possess one or two longitudinal nerves. It is supposed that the plexus nature of the nervous system in phoronids may be related to their phylogenesis. A comparison of the nervous system organization and body plans among the Lophophorata suggests that the nervous system of phoronids cannot be considered as a reductive variant of the brachiopod nervous system. At the same time, the structure of the nervous system of bryozoans can be derived from that of phoronids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call