Abstract

Recent experimental studies of the giant electric resonance region in 58Ni and 40Ca with inelastically scattered α-particles of energy Eα= 240 MeV are analyzed within a microscopic nuclear structure model. The model includes the continuum RPA and more complex 1p1h⊗phonon configurations. By superimposing the contributions of different multipoles up to L = 4 we obtain good agreement with the newest (reanalyzed) data for the isoscalar monopole strength and for the total (α,α′) cross section in 58Ni. Agreement with experiment for the isoscalar monopole resonance in 40Ca is obtained too. We emphasize the necessity of using microscopic transition densities and discuss consequences for the analyses of such experiments in light and medium mass nuclei. It is shown that the gross structure of the isoscalar monopole resonance in 40Ca is caused by the 1p1h⊗phonon configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.