Abstract

MICROSCOPE’s space test of the weak equivalence principle (WEP) is based on the minute measurement of the difference of accelerations experienced by two test masses as they orbit the Earth. A detection of a violation of the WEP would appear at a well-known frequency f EP depending on the satellite’s orbital and spinning frequencies. Consequently, the experiment was optimised to minimise systematic errors at f EP. Glitches are short-lived events visible in the test masses’ measured acceleration, most likely originating in cracks of the satellite’s coating. In this paper, we characterise their shape and time distribution. Although intrinsically random, their time of arrival distribution is modulated by the orbital and spinning periods. They have an impact on the WEP test that must be quantified. However, the data available prevents us from unequivocally tackling this task. We show that glitches affect the test of the WEP, up to an a priori unknown level. Discarding the perturbed data is thus the best way to reduce their effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call