Abstract

We report the H, C, and N isotopic compositions of microscale (0.2 to 2 µm) organic matter in samples of asteroid Ryugu and the Orgueil CI carbonaceous chondrite. Three regolith particles of asteroid Ryugu, returned by the Hayabusa2 spacecraft, and several fragments of Orgueil were analyzed by NanoSIMS isotopic imaging. The isotopic distributions of the Ryugu samples from two different collection spots are closely similar to each other and to the Orgueil samples, strengthening the proposed Ryugu-CI chondrite connection. Most individual sub-μm organic grains have isotopic compositions within error of bulk values, but 2–10 % of them are outliers exhibiting large isotopic enrichments or depletions in D, 15N, and/or 13C. The H, C and N isotopic compositions of the outliers are not correlated with each other: while some organic grains are both D- and 15N-enriched, many are enriched or depleted in one or the other system. This most likely points to a diversity in isotopic fractionation pathways and thus diversity in the local formation environments for the individual outlier grains. The observation of a relatively small population of isotopic outlier grains can be explained either by escape from nebular and/or parent body homogenization of carbonaceous precursor material or addition of later isotopic outlier grains. The strong chemical similarity of isotopically typical and isotopically outlying grains, as reflected by synchrotron x-ray absorption spectra, suggests a genetic connection and thus favors the former, homogenization scenario. However, the fact that even the least altered meteorites show the same pattern of a small population of outliers on top of a larger population of homogenized grains indicates that some or most of the homogenization occurred prior to accretion of the macromolecular organic grains into asteroidal parent bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.