Abstract

The escalating heat dissipation problem in electronic devices has become the key driver to numerous investigations on new cooling techniques, including the heavily-researched microchannel heat sink. However, literature shows that microscale heat transfer is generally not being applied to macro geometries, which is believed largely due to the fabrication and operational challenges. In present study, experiments were conducted to attain high heat removal capabilities comparable to that of microchannels in a circular channel of conventional size, which was manufactured through conventional techniques. The channel is 20 mm in diameter and 30 mm in length. Inserts of different sizes and profiles were inserted into the flow channel, one at a time, to make the annular flow path small enough to behave like a microchannel. The gap size of the flow channels experimented ranges from 200 to 1000 µm. Experimental results obtained showed that the design was able to achieve a maximum heat transfer coefficient of 79,000 W/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ·K with single-phase water flowing through the annular channel of gap size of 200 µm at Reynolds number of 5600.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.