Abstract
Abstract Carbon Fiber Reinforced Polymer (CFRP) is a light-weight material with high strength and highly corrosion resistance, and hence is widely applied in aerospace industries. However, milling of CFRP usually generates machining defects (for instance, delamination and pull-out fibres), making processed surface unqualified to meet the requirement of aerospace application. Therefore, prediction for machining quality should be conducted before milling processing to avoid potential loss in massive production. Fracture behaviours of micro-scale fibres and matrix have a significant influence on the final machined surface, and such material removal mechanism can be mainly determined by micro-scale geometrical relationships between carbon fibers and milling teeth. In this paper, a micro-scale geometrical calculation software for CFRP milling is provided based on Dexel model. The software can generate geometrical parameters, for example, cutting angle, cutting length and engagement angle, for the whole milling process. Milling defects and milling forces can be conducted based on those micro-scale geometrical parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.