Abstract

The microscale drilling performance of a Zr-based bulk metallic glass (BMG) is investigated in this paper. Crystallization, drill temperature, axial force, spindle load (SL), acoustic emissions (AE), chip morphology, hole diameter, and entry burr height are measured and analyzed with varying cutting speed and chip load. The progression of tool wear is assessed using stereo-microscopy techniques. At small chip loads, minimum chip thickness (MCT) is observed to shift cutting mechanics from a shear-dominated to a ploughing-dominated regime. Consequently, evidence of drill instability and larger burr height are observed. As drilling temperatures rise above the glass transition temperature, the BMG thermally softens due to the transition to a super-cooled liquid state and begins to exhibit viscous characteristics. In the tool wear study using tungsten carbide microdrills, rake wear is found to dominate compared to flank wear. This is attributed to a combination of a high rate of diffusion wear on the rake face as well as lower abrasion on the flank due to the decreased hardness from thermal softening-induced viscous flow of BMG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.