Abstract

Colocalization of cascade enzymes is broadly discussed as a phenomenon that can boost the cascade reaction throughput, although a direct experimental verification is often challenging. This is mainly due to difficulties in establishing proper size regimes and in the analytical quantification of colocalization effect with adequate experimental systems and simulations. In this study, by taking advantage of reversible DNA-directed colocalization of enzymes on microspheres, we established a cascade system that can be used to directly evaluate the colocalization effect with exactly the same experimental settings except for the state of enzyme dispersion. In the regime of highly dilute microspheres of particular sizes, the colocalized cascade shows enhanced activity compared with the freely diffusing cascade, as evidenced by a shortened lag phase in the time-course production. Reaction-diffusion modeling reveals that the enhancement can be ascribed to the initial accumulation of intermediate substrate around the colocalized enzymes and is found to be carrier-size-dependent. This work demonstrates the dependence of the colocalization effect of enzyme cascades on an interplay of nano- and microscales, lending theoretical support to the rational design of highly efficient multienzyme catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.