Abstract

Shape morphing and the possibility of having control over mechanical properties via designed deformations have attracted a lot of attention in the materials community and led to a variety of applications with an emphasis on the space industry. However, current materials normally do not allow to have a full control over the deformation pattern and often fail to replicate such behavior at low scales which is essential in flexible electronics. Thus, in this paper, novel 2Dand 3D microscopic hierarchical mechanical metamaterials using mutually-competing substructures within the system that are capable of exhibiting a broad range of the highly unusual auxetic behavior are proposed. Using experiments (3D microprinted polymers) supported by computer simulations, it is shown that such ability can be controlled through geometric design parameters. Finally it is demonstrated that the considered structure can form a composite capable of shape morphing allowing it to deform to a predefined shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.