Abstract

Microsatellites or simple sequence repeats (SSR) are ubiquitous in organism genomes. Investigation on the SSR variations induced by allopolyploidization is useful to understand the evolution of allopolyploid. In this study, we compared SSR loci using primers specific to A, B, and D genomes in five synthesized hexaploid wheat between tetraploid wheat Langdon and five accessions of Aegilops tauschii. The results showed that 4.0% (5 out of 125) and 4.8% (6 of 125) genomic SSRs on A and B genomes exhibited variations, respectively. A low frequency (2.6%) of variations was observed in the expressed sequence tag (EST)-SSRs located on A/B genomes. This indicated that lower variation existed in functional genes than in non-coding regions, i.e. genomic SSR. In addition, 2.9% (3 of 103) genomic SSRs on D genome showed variations. Sequence analyses indicated that the length of SSRs was mainly due to the variation of the number of repeated units. The microsatellite sequences with disappearance may be more likely to be changed than the ordinary microsatellite sequences. The ubiquitous microsatellites may play an important buffering role to achieve genome stability and plasticity in polyploidy evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.