Abstract

Climate change is causing a lack of acidity during winemaking and oenologists use several solutions to cope with such a problem. Lachancea thermotolerans, which has the potential to tolerate the harsh physicochemical conditions of wine, has emerged as a promising alternative for pH management during winemaking and, currently, it is the most valuable yeast used for acidity control in wine. In this work a manageable method for L. thermotolerans genotyping based on a multiplexed microsatellite amplification in 6 different loci was developed. The proposed method was used to distinguish between 103 collection strains obtained from different geographical and isolation sources, and then challenged against a 429 L. thermotolerans isolates from several wineries and harvests. The procedure was also tested for fermentation monitoring and strain implantation. This approach was conceived to simplify the methodology available for L. thermotolerans genotyping, making it easy for applying in wine-related laboratories. This method can be applied to distinguish between L. thermotolerans strains in selection programs and to follow implantation of inoculated strains during winemaking with optimal results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call