Abstract

Seed collections in gene banks are useful for the preservation of wild germplasm, providing inexpensive insurance for species that survive in conventional cold storage (−18 °C). Seeds that cannot survive these conditions must be pretreated with cryoprotectants and stored at liquid nitrogen temperatures, which presents unique technical and methodological challenges. Implicit in this approach is the assumption that these added manipulations do not change the genetic diversity of the preserved collections. We used polymorphic microsatellite markers for an endangered aquatic grass, Texas wild rice (Zizania texana), to conduct a preliminary evaluation of the effects of cryogenic preservation of mature embryos on genetic diversity. Using several statistical approaches, we show that allele frequencies did not change in collections of seeds that underwent cryopreservation (cryoprotected) compared to those samples that was not exposed to cryopreservation (control). The retention of the allelic diversity at the five loci examined suggests that there were no significant changes in genetic diversity due to treatments and that these protocols may be appropriate for ex situ conservation of genetically diverse wild germplasm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call