Abstract

BackgroundMicrosatellite instability (MSI) occurs in solid tumors and is a predictive biomarker for remarkable response to immune checkpoint inhibitors. Detection of MSI status has been conventionally conducted by PCR–electrophoresis-based assay (MSI-PCR) and immunohistochemistry (IHC) of mismatch repair proteins. However, these approaches require visual confirmation and involve some difficulties in determining MSI statuses from equivocal results. MethodsWe performed amplicon-based targeted sequencing of 76 microsatellite loci (MSI-NGS) in 184 formalin-fixed paraffin-embedded (FFPE) tumor tissues and baseline control samples. A bioinformatics tool, MSIcall, was used to calculate the quantitative values based on the aligned sequence reads and evaluated MSI status. Furthermore, we examined the concordance between the results from MSI-NGS and MSI-PCR/IHC. Diagnostic accuracy, sensitivity, and specificity were estimated by receiver operating characteristic (ROC) curve analysis. For validation cohort, we studied additional 50 tumor samples to determine the MSI status. ResultsOf 184 tumor samples, MSI-PCR and IHC analysis classified 161 tumors as MSS/pMMR and 23 as MSI-H/dMMR. Using MSI-NGS combined with MSIcall, we predicted MSI status with high accuracy (98.9%), specificity (91.3%), and sensitivity (100%) in 25 types of cancers. This method achieved an area under the ROC curve (AUC) value of 0.9986. Furthermore, we achieved the 100% concordant results using additional 50 samples for validation. ConclusionWe demonstrated newly developed MSI-NGS with MSIcall accurately determines the MSI status of FFPE tumor tissues thorough sequencing of tumor samples alone without patient-matched normal controls. This approach can be applied to all types of solid tumors to determine responders to immune-oncology therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.