Abstract

To test whether a subset of esophageal squamous cell carcinomas (SCC) develop through a deficiency in DNA mismatch repair, we examined microsatellite instability (MSI) using 11 microsatellite markers including BAT-26, hMLH1 protein expression by immunohistochemistry, and methylation status of the hMLH1 promoter by methylation-specific polymerase chain reaction (MSP). p53 mutations were also investigated. Microsatellite instability at one or more loci was observed in 40% (12/30) of esophageal SCC tumor samples, although only one of these tumors was categorized as high-frequency MSI (MSI-H) and none showed BAT-26 instability. While immunohistochemistry revealed decreased hMLH1 protein expression in 27% (8/30) of the tumors, hMLH1 promoter hypermethylation was not observed. Absence of hMLH1 protein expression was relatively common in well-differentiated (keratinizing-type) esophageal SCC, but was not associated with hMLH1 promoter hypermethylation. p53 mutation was detected in 37% (11/30) and loss of heterozygosity (LOH) in 90% (27/30) of esophageal SCC samples. Our results suggested that most esophageal SCC develop through defects in tumor suppressor genes (i.e. the suppressor pathway), and that MSI in esophageal SCC probably represent random replication errors rather than being associated with DNA mismatch repair deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.