Abstract

We describe a statistical method for estimating the effectiveness of a stock enhancement programme using nuclear DNA loci. It is based on knowing the population allele frequencies and the genotypes of the hatchery parents (mother only, or mother and father), and on determining the probability that a wild-born animal will by chance have a genotype consistent with hatchery origin. We show how to estimate the proportion of released animals in the wild population, and its standard error. The method is applied to a data set of eight microsatellite loci in brown tiger prawns (Penaeus esculentus), prior to the start of a possible enhancement programme. We conclude that, for this particular data set, the effectiveness of such an enhancement programme could be quantified accurately if both maternal and paternal genotypes are known, but not if maternal genotypes only are known. Full paternal genotyping would require offspring genotyping and thus would be expensive, but a partly typed paternal genotype from a mass homogenate of offspring would be almost as effective and much cheaper. The experiment would become feasible based on maternal genotypes alone, if a further three typical microsatellite loci could be found to add to the existing panel of eight. The methods detailed should be of interest to any enhancement project that relies on nuclear DNA markers to provide tags.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.