Abstract

BackgroundAnopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci.ResultsWe found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia.ConclusionWe detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and Central America, parts of Colombia and Venezuela (genotype 2), and are in agreement with previously published mitochondrial COI gene sequences interpreted as incipient species. Overall, it appears that two main factors have contributed to the genetic differentiation between the population clusters: physical distance between the populations and the differences in effective population sizes among the subpopulations.

Highlights

  • Anopheles darlingi is the most important malaria vector in the Neotropics

  • All individuals collected from Peru and Brazil were classified as white genotype 1 and all those collected from Guatemala and Belize were classified as white genotype 2 [10, Mirabello and others in submission]

  • Genetic diversity From the original set of eight microsatellite loci designed for A. darlingi from eastern Amazonian Brazil [47], one locus (ADC107) did not amplify in any of the individuals collected from Peru and three loci (ADC01, ADC29, and ADC107) did not amplify in any of the individuals from Belize or Guatemala

Read more

Summary

Introduction

Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. A complete understanding of A. darlingi's population structure and the processes responsible for the distribution of differentiation is important to vector-based malaria control programs and for identifying heterogeneity in disease transmission as a result of discrete vector populations [11,12]. Mirabello and Conn [28] found a significant genetic division with mtDNA cytochrome oxidase I (COI) data between populations in (1) Amazonia and southern Brazil, and those in (2) Central America and northwestern Colombia. This division was further evaluated with the single copy protein-coding nuclear white gene [30,31] and rDNA internal transcribed spacers (ITS) 1 and 2 as independent markers [10]. The divergence was hypothesized to have occurred during the early to late Pleistocene, most likely shaped by complex Pleistocene climatic changes leading to refugial isolation [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call