Abstract

Besides controlling eye movements, the brain's oculomotor system has been implicated in the control of covert spatial attention and the rehearsal of spatial information in working memory. We investigated whether the oculomotor system also contributes to rehearsing visual objects in working memory when object location is never asked about. To address this, we tracked the incidental use of locations for mnemonic rehearsal via directional biases in microsaccades while participants maintained two visual objects (colored oriented gratings) in working memory. By varying the stimulus configuration (horizontal, diagonal, and vertical) at encoding, we could quantify whether microsaccades were more aligned with the configurational axis of the memory contents, as opposed to the orthogonal axis. Experiment 1 revealed that microsaccades continued to be biased along the axis of the memory content several seconds into the working memory delay. In Experiment 2, we confirmed that this directional microsaccade bias was specific to memory demands, ruling out lingering effects from passive and attentive encoding of the same visual objects in the same configurations. Thus, by studying microsaccade directions, we uncover oculomotor-driven rehearsal of visual objects in working memory through their associated locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call