Abstract

Human perceptual learning, experience-induced gains in sensory discrimination, typically yields long-term performance improvements. Recent research revealed long-lasting transfer at the untrained location enabled by feature-based attention (FBA), reminiscent of its global effect (Hung & Carrasco, Scientific Reports, 11(1), 13914, (2021)). Visual Perceptual Learning (VPL) is typically studied while observers maintain fixation, but the role of fixational eye movements is unknown. Microsaccades – the largest of fixational eye movements – provide a continuous, online, physiological measure from the oculomotor system that reveals dynamic processing, which is unavailable from behavioral measures alone. We investigated whether and how microsaccades change after training in an orientation discrimination task. For human observers trained with or without FBA, microsaccade rates were significantly reduced during the response window in both trained and untrained locations and orientations. Critically, consistent with long-term training benefits, this microsaccade-rate reduction persisted over a year. Furthermore, microsaccades were biased toward the target location prior to stimulus onset and were more suppressed for incorrect than correct trials after observers’ responses. These findings reveal that fixational eye movements and VPL are tightly coupled and that learning-induced microsaccade changes are long lasting. Thus, microsaccades reflect functional dynamics of the oculomotor system during information encoding, maintenance and readout, and may serve as a reliable long-term physiological correlate in VPL.Supplementary InformationThe online version contains supplementary material available at 10.3758/s13423-022-02151-8.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call