Abstract

The use of untethered microrobots for precise synergistic anticancer drug delivery and controlled release has attracted attention over the past decade. A high surface area of the microrobot is desirable to achieve greater therapeutic effect by increasing the drug load. Therefore, various nano- or microporous microrobot structures have been developed to load more drugs. However, as most porous structures are not interconnected deep inside, the drug-loading efficiency may be reduced. Here, we propose a magnetically guided helical microrobot with a Gyroid surface for high drug-loading efficiency and precise drug delivery. All spaces inside the proposed microrobot are interconnected, thereby enabling drug loading deep inside the structure. Moreover, we introduce gold nanostars on the microrobot structure for near-infrared-induced photothermal therapy and triggering drug release. The results of this study encourage further exploration of a high loading efficiency in cell-based therapeutics, such as stem cells or immune cells, for microrobot-based drug-delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.