Abstract

BackgroundMicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm.ResultsWe establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of Bombyx mori females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1). Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305), and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression.ConclusionsIn this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.

Highlights

  • MicroRNAs repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species

  • A previous study shows that miR-274 is expressed predominantly in a single anterior stripe in Drosophila blastoderm embryos roughly corresponding to the intercalary segment [17]

  • MiR-274 (No.15) expression was restricted to the silk glands and malpighian tubules. miR-1 (No.22) was most strongly detected in the head and body wall, followed by the midgut, fat body and the malpighian tubules, but was undetectable in the silk glands, gonads and hemocytes. miR-279 (No.25) and miR-307-5p (No.30) were expressed in the head, body wall, fat body, ovaries, hemocytes and malpighian tubules

Read more

Summary

Introduction

MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Single miRNAs may regulate hundreds of different target genes at the post-transcriptional level, and extensively control more than 30% of animal genes [3,6]. Bantam miRNA regulates cell proliferation and death by targeting the apoptosis gene hid (wrinkled) [11]. Drosophila miR-14 is implicated in fat metabolism, stress resistance and cell death [12]. Most of these well-characterized miRNAs are highly conserved between invertebrates and vertebrates, resulting in maintenance of their regulatory functions across species [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.