Abstract

MicroRNAs (miRNAs) as a newly founded and thriving non-coding endogenous class of molecules which regulate many cellular pathways after transcription have been extensively investigated in regenerative medicine. In this systematic review, we sought to analyze miRNAs-mediated therapeutic approaches for influencing angiogenesis in bone tissue/bone regeneration. An electronic search in MEDLINE, Scopus, EMBASE, Cochrane library, web of science, and google scholar with no time limit were done on English publications. All types of original articles which a miRNA for angiogenesis in bone regeneration were included in our review. In the process of reviewing, we used PRISMA guideline and, SYRCLE's and science in risk assessment and policy tools for analyzing risk of bias. Among 751 initial retrieved records, 16 studies met the inclusion criteria and were fully assessed in this review. 275 miRNAs, one miRNA 195~497 cluster, and one Cysteine-rich 61 short hairpin RNA were differentially expressed during bone regeneration with 24 predicted targets reported in these studies. Among these miRNAs, miRNA-7b, -9, -21, -26a, -27a, -210, -378, -195~497 cluster, -378 and -675 positively promoted both angiogenesis and osteogenesis, whereas miRNA-10a, -222 and -494 inhibited both processes. The most common target was vasculoendothelial growth factor-signaling pathway. Recent evidence has demonstrated that miRNAs actively participated in angio-osteogenic coupling that can improve their therapeutic potentials for the treatment of bone-related diseases and bone regeneration. However, there is still need for further research to unravel the exact mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call