Abstract

MicroRNA (miRNA) is a new class of small noncoding RNA molecules that regulate a wide spectrum of gene expression in a posttranscriptional manner. MiRNAs play crucial roles in tumorigenesis, angiogenesis, invasion, and apoptosis for various types of tumor. Recent studies have identified dysregulation of specific miRNAs in malignant gliomas. Global expression profiling of miRNAs has revealed several miRNAs clinically implicated in human glioblastomas. Some miRNAs are clearly associated with clinical outcome and chemo- and radio-therapy resistance in these tumors. Furthermore, miRNAs also regulate specific signaling pathways, including the critical core pathways in glioblastoma. As a result, miRNAs have the potential to affect the responses to molecular-targeted therapies. More recent studies have revealed that miRNAs might be associated with cancer stem cell properties, affecting tumor maintenance and progression. Recent investigation have revealed that miRNAs are not only biological markers with diagnostic implications, but also one of the most promising treatment targets in human glioblastoma. Herein, we summarized the novel insights of miRNAs into human malignant gliomas.

Highlights

  • Glioblastoma is one of the most common and malignant primary brain tumors in adults

  • Recent work has identified a class of small noncoding RNA molecules, named microRNA, which regulate a wide spectrum of gene expression in a posttranscriptional manner [4, 5]

  • Our study identified 16 miRNAs for which expression was significantly altered in glioblastoma (WHO grade 4) compared with anaplastic astrocytoma (WHO grade 3)

Read more

Summary

Introduction

Glioblastoma is one of the most common and malignant primary brain tumors in adults. Glioblastoma is essentially a pathogenetically heterogeneous tumor, and resent large-scale genomic analyses have allowed molecular subclassification of glioblastomas [1,2,3]. More than 1500 precursors and 1921 mature human miRNAs have been discovered and registered in miRBase to date [6], and these miRNAs reportedly regulate approximately 30% of all protein-coding genes [7]. It is predicted that more than half of protein coding genes would be regulated by miRNAs. The incorporation of the mature miRNA into an effector complex, called RNAinduced silencing complex (RISC), binds to messenger RNA (mRNA) and can affect the translation and stability of mRNA [7]. A recent large-scale multidimensional analysis of molecular characteristics, The Cancer Genome Atlas (TCGA), which includes the expression profiles of miRNA as well as DNA copy number, gene expression, and DNA methylation, has revealed frequent genetic alterations in three critical core pathways [9]. The present paper summarizes recent insights regarding miRNA and human malignant gliomas

Identification of MicroRNAs
Methods
Subclassification Based on miRNA Expression Profiles
Findings
Future Directions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.