Abstract

Based on their extracellular expression and targeting of the clock gene Bmal1, miR-142-3p and miR-494 were analyzed for evidence of vesicle-mediated communication between cells and intracellular functional activity. Our studies demonstrate that: miR-142-3p+miR-494 overexpression decreases endogenous BMAL1 levels, increases the period of Per2 oscillations, and increases extracellular miR-142-3p/miR-494 abundance in conditioned medium; miRNA-enriched medium increases intracellular expression of miR-142-3p and represses Bmal1 3'-UTR activity in naïve cells; and inhibitors of vesicular trafficking modulate intercellular communication of these miRNAs and ensemble Per2 rhythms. Thus, miR-142-3p and miR-494 may function as cis- and trans-acting signals contributing to local temporal coordination of cell-autonomous circadian clocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.