Abstract

ObjectivesOdontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas.Material & methodsMicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls.ResultsWe identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types.ConclusionWe identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma.

Highlights

  • Odontogenic tumors (OT) represent a specific pathological category that is interesting due to its unique and complex etiopathogenesis that causes lesions with variable, sometimes unpredictable biological behavior

  • We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process

  • Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to unicystic ameloblastoma (UA), 7 in relation to SA and 1 that was related to both types

Read more

Summary

Introduction

Odontogenic tumors (OT) represent a specific pathological category that is interesting due to its unique and complex etiopathogenesis that causes lesions with variable, sometimes unpredictable biological behavior. Most OT are benign, some may exhibit local aggressiveness and high recurrence rates [1,2]. One of such tumors is the ameloblastoma, a neoplasm composed by proliferating odontogenic epithelium that resembles the enamel organ, which may produce diverse clinical and histomorphological variants [2]. The most common type of amelobastomas is the solid/multicystic (SA), but there is an enterely cystic variant, the unicystic ameloblastoma (UA), which is considered a much less aggressive entity as compared to SA [1,2] and should be identified and treated in a less aggressive way. It has been shown that a hyperactive RAS–RAF–MAPK pathway is closely associated with the pathogenesis of the ameloblastoma, either through EGFR-mediated signalling or through frequent activating mutations in the BRAF gene [10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.