Abstract
BackgroundMicroRNAs (miRNAs) are small non-coding RNAs about 22 nucleotides in length, which play an important role in gene regulation of both eukaryotes and viruses. They can promote RNA cleavage and repress translation via base-pairing with complementary sequences within mRNA molecules.Main bodyHuman cytomegalovirus (HCMV) encodes a large number of miRNAs that regulate transcriptions of both host cells and themselves to favor viral infection and inhibit the host’s immune response. To date, ~ 26 mature HCMV miRNAs have been identified. Nevertheless, their roles in viral infection are ambiguous, and the mechanisms have not been fully revealed. Therefore, we discuss the methods used in HCMV miRNA research and summarize the important roles of HCMV miRNAs and their potential mechanisms in infection.ConclusionsTo study the miRNAs encoded by viruses and their roles in viral replication, expression, and infection will not only contribute to the planning of effective antiviral therapies, but also provide new molecular targets for the development of antiviral drugs.
Highlights
Methods of Human cytomegalovirus (HCMV) miRNA research and HCMV culture systems HCMV can infect most organs and tissues in vivo, while its replication cycle differs significantly among different infected host cells
We summarize the important roles of HCMV miRNAs and their potential mechanisms in infection, as well as discussing the research methods used to investigate HCMV miRNAs
UV-inactivated virus is widely used for comparison, in order to ensure that the miRNAs detected in latent models are derived from RNAs synthesized de novo during latent infection, as HCMV incorporates both viral and cellular RNA into virions [30, 49]
Summary
Herpesviruses belong to a ubiquitous family of enveloped dsDNA viruses and are subdivided into three subfamilies (α, β and γ), based on their sequence homology. A notable characteristic of herpes viruses is that they can use viral proteins and viral miRNAs to establish a lifelong latent infection in their host without producing overt disease [13]. These miRNAs cooperate with viral proteins to regulate the expression of viral and/or host genes that are involved in the immune evasion, survival, and proliferation of infected cells, as well as, critically, the latency and reactivation of the virus. In contrast to other herpes viruses, the miRNA genes of HCMV are scattered throughout the viral genome (Fig. 2), implying that the expression and function of each isolated HCMV miRNA may be regulated by its own regulatory sequence. We summarize the important roles of HCMV miRNAs and their potential mechanisms in infection, as well as discussing the research methods used to investigate HCMV miRNAs
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.