Abstract

One of the major challenges in the cancer treatment is the development of drug resistance. It represents a major obstacle to curing cancer with constrained efficacy of both conventional chemotherapy and targeted therapies, even recent immune checkpoint blockade therapy. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in the resistance to various cancer treatments. MicroRNAs are a family of small noncoding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified in human genome. While one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance, thereby modulating the sensitivity of cancer cells to treatment. Therefore, manipulation of miRNAs may be an attractive strategy for more effective individualized therapies through reprograming resistant network in cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.