Abstract

Renal transplantation provides a significant increase in life expectancy for patients with end-stage kidney diseases. Despite the unequivocal progresses made in the last decades, many grafts injuries still jeopardize graft function leading to its loss. Currently, the allograft biopsy is the gold standard for diagnosing such conditions. However, it has many limitations including risk and cost. Therefore, it is desirable to develop non-invasive biomarkers able to lead to the diagnosis of graft injuries. This is particularly true during the delayed graft function (DGF) period in which the functional parameters are not available. MicroRNAs regulate their target genes through mechanisms of translational repression and messenger RNA (mRNA) degradation. A single miRNA can regulate the expression of hundreds of mRNAs and proteins, deregulation of miRNAs can lead to disruption and suppression of genes that operate in intracellular signaling cascades leading to disease conditions. Technological advances have allowed the accurate detection of miRNAs in biological fluids providing either qualitative or quantitative results. Here we reviewed the literature in which miRNAs were analyzed as injury markers in renal transplantation mainly for contribute the diagnosis of acute rejection (AR). In cross sectional studies miRNAs were found to be useful markers of AR in renal transplant patients and their heightened expression by may became useful on aiding the diagnosis of AR during the DGF period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call