Abstract

For almost three decades, cancer was thought to result from changes in the structure and/or expression of protein coding genes. The discovery of thousands of genes that produce noncoding RNA (ncRNA) transcripts in the past few years suggested that the molecular biology of cancer is much more complex. MicroRNAs (miRNAs), an important group of ncRNAs, have recently been associated with tumorigenesis by acting either as tumor suppressors or oncogenes. Experimental prediction of miRNA genes is a slow process, because of the difficulties of cloning ncRNAs. Complementary to experimental approaches, a number of computational tools trained to recognize features of the biogenesis of miRNAs have significantly aided in the prediction of new miRNA candidates. By narrowing down the search space, computational approaches provide valuable clues as to which are the dominant features that characterize these regulatory units and which genes are their most likely targets. Moreover, through the use of high-throughput expression profiling methods, many molecular signatures of miRNA deregulation in human tumors have emerged. In this review, we present an overview of existing computational methods for identifying miRNA genes and assessing their expression levels, and analyze the contribution of such tools toward illuminating the role of miRNAs in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.