Abstract

Diabetic cardiomyopathy is a common complication in patients with diabetes and is associated with underlying chronic inflammation and cardiac cell death, subsequently leading to heart failure (HF). ELAV-like protein 1 (ELAVL1) plays a critical role in the progression of inflammation and HF. However the role of ELAVL-1 in inflammation induced cardiac cell death (pyroptosis) under hyperglycemic condition remains elusive. Our data demonstrates that ELAVL1 expression augmented with a concomitant increase in caspase-1 and IL-1 beta expression in human hearts and human ventricular cardiomyocytes under hyperglycemic condition. Furthermore, ELAVL1 knockdown abrogates TNF-α induced canonical pyroptosis via NLRP3, caspase-1 and IL-1beta suppression. Bioinformatics analysis and target validation assays showed that miR-9 directly targets ELAVL1. Interestingly, miRNA-9 expression significantly reduced in high glucose treated cardiomyocytes and in human diabetic hearts. Inhibition of miR-9 upregulates ELAVL1 expression and activates caspase-1. Alternatively, treatment with miR-9 mimics attenuates hyperglycemia-induced ELAVL1 and inhibits cardiomyocyte pyroptosis. Taken together our study highlights the potential therapeutic implications of targeting miR-9/ELAVL1 in preventing cardiomyocyte cell loss during HF in diabetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call