Abstract

MicroRNA-7a2 (miR-7a2) plays fundamental roles in the female reproductive axis, and estrogen is indispensable for maintaining ovary function. However, the interaction between miR-7a2 and ovarian function is unclear. The present study aimed to determine whether and how miR-7a2 functions in estrogen synthesis. Firstly, the results verified that miR-7a was highly expressed in ovarian granulosa cells. The knockout (KO) of miR-7a2 caused infertility and abnormal ovarian function in mice. Concomitantly, the Cyp19a1 expression and estrogen synthesis were significantly inhibited, which was validated in primary granulosa cells. The mice transplanted with miR-7a2 KO ovaries showed similar results; however, estrogen supplementation reversed infertility. In the in vitro experiment, follicle-stimulating hormone (FSH) significantly improved the expression of miR-7a and Cyp19a1 and the synthesis of estrogen. However, the miR-7a2 KO markedly reversed the function of FSH. Also, FSH upregulated miR-7a by activating the (c-Jun N-terminal kinase) JNK signaling pathway. In addition, Golgi apparatus protein 1 (Glg1) was shown to be the target gene of miR-7a2. These findings indicated that miR-7a2 is essential for ovarian functions with respect to estrogen synthesis through the targeted inhibition of the expression of Glg1 and then promoting Cyp19a1 expression; the physiological process was positively regulated by FSH via the JNK signaling pathway in granulosa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call