Abstract

MicroRNA-630 (miR-630) has been implicated in the development and progression of multiple cancers. The current study aimed to investigate the role of miR-630 in chemoresistant epithelial ovarian cancer. MiR-630 expression levels were detected in ovarian cancer cell line SKOV3 and paclitaxel-resistant SKOV3 (SKOV3-TR) via microarray and qRT-PCR. MiR-630 inhibitors and negative controls were transfected into SKOV3 and SKOV3-TR cells. Wound healing, invasion, chemosensitivity, and cell apoptosis assays were performed to determine proliferation and migration rates. Chemoresistant patient-derived xenograft (PDX) models were established and utilized to verify the effect of miR-630 on chemoresistant ovarian cancer. Inhibition of miR-630 decreased cell proliferation and enhanced the sensitivity of SKOV3-TR and SKOV3 cells to paclitaxel. In the chemosensitivity assay, we observed that the miR-630 inhibitor exhibited a synergistic effect with paclitaxel on SKOV3-TR cells. Inhibition was correlated with enhanced expression of apoptosis-related proteins. APAF-1 was predicted to be a potential target of miR-630. An in vivo PDX study showed that the miR-630 inhibitor sensitized chemoresistant ovarian cancer to paclitaxel. Thus, miR-630 inhibitor sensitizes chemoresistant epithelial ovarian cancer to chemotherapy by enhancing apoptosis. Our findings suggest that miR-630 might be a potential therapeutic target for chemotherapy-resistant ovarian cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.