Abstract

MicroRNAs (miRNAs) are single-stranded, small non-coding RNA molecules that participate in important biological processes. Although the functions of many miRNAs in breast cancer metastasis have been established, the role of others remains to be characterized. To identify additional miRNAs involved in metastasis, we performed a genetic screen by transducing a Lenti-miR™ virus library into MCF-7 cells. Using transwell invasion assays we identified human miR-548j as an invasion-inducing miRNA. The endogenous levels of miR-548j expression in breast cancer cell lines were shown to correlate with invasiveness. Moreover, miR-548j was shown to stimulate breast cancer cell invasion and metastasis in vitro and in vivo, but had no effect on proliferation. Next, using a series of in vitro and in vivo experiments, we found that Tensin1 served as a direct and functional target of miR-548j. Both miR-548j and Tensin1 modulated the activation of Cdc42 to regulate cell invasion and siCdc42 or the selective Cdc42 inhibitor ML141 suppressed the pathway of miR-548j-mediated cell invasion. Furthermore, a strong correlation between miR-548j, Tensin1, metastasis and survival was observed using two sets of clinical breast cancer samples. Our findings demonstrate that miR-548j functions as a metastasis-promoting miRNA to regulate breast cancer cell invasion and metastasis by targeting Tensin1 and activating Cdc42, suggesting a potential therapeutic application in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.