Abstract
Nodal is a member of the transforming growth factor-β superfamily that plays crucial roles during embryogenesis. Recently, we have reported that Nodal inhibits trophoblast cell proliferation, migration and invasion, but induces apoptosis in the human placenta. In this study, we examined the regulation of Nodal by microRNAs. In silico analysis of Nodal 3'UTR revealed a potential binding site for miR-378a-5p. In luciferase reporter assays, we found that miR-378a-5p suppressed the luciferase activity of a reporter plasmid containing Nodal 3'UTR but this suppressive effect was completely abolished when the predicted target site was mutated. Western blot analysis showed that miR-378a-5p decreased whereas anti-miR-378a-5p increased Nodal protein levels. These results indicate that miR-378a-5p targets Nodal 3'UTR to repress its expression. Stable transfection of the miR-378a-5p precursor, mir-378a, into HTR8/SVneo cells enhanced cell survival, proliferation, migration and invasion. Transient transfection of mature miR-378a-5p mimic, and to a lesser extent, siRNA targeting Nodal, produced similar effects. However, anti-miR-378a-5p inhibited cell migration and invasion. In addition, overexpression of Nodal reversed the invasion-promoting effect of miR-378a-5p. Furthermore, miR-378a-5p enhanced, whereas anti-miR-378a-5p suppressed, the outgrowth and spreading of extravillous trophoblast cells in first trimester placental explants. Finally, miR-378a-5p was detected in human placenta throughout different stages of gestation and in preterm pregnancies, placental miR-378a-5p levels were lower in preeclamptic patients than in healthy controls. Taken together, these findings strongly suggest that miR-378a-5p plays an important role in human placental development by regulating trophoblast cell growth, survival, migration and invasion, and that miR-378a-5p exerts these effects, at least in part, through the suppression of Nodal expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.