Abstract
Our previous study reported that microRNA-375 (miR-375) is significantly upregulated in ventricular septal myocardial tissues from 22-week-old fetuses with ventricular septal defect as compared with normal controls. In the present study, the specific effects of miR-375 on P19 cell differentiation into cardiomyocyte-like cells were investigated. Stable P19 cell lines overexpressing miR-375 or containing empty vector were established, which could be efficiently induced into cardiomyocyte-like cells in the presence of dimethyl sulfoxide in vitro. miR-375 overexpression was verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined according to total cell counts; cell cycle distribution and apoptosis levels were examined using flow cytometry. Apoptosis-related morphological changes were observed using Hoechst staining and fluorescence microscopy. During P19 cell differentiation, the cardiomyogenesis-related mRNAs (cardiac troponin T, GATA binding protein 4, myocyte-specific enhancer factor 2C) and mRNAs involved in the Notch signaling pathway (Notch2, Delta-like 1 and hes family bHLH transcription factor 1) were detected at days 0, 4, 6 and 10. Their differential expression was examined using RT-qPCR; the apoptosis-related genes BAX and Bcl-2 were also detected using this method. The corresponding proteins were evaluated by western blotting. Compared with the control group, miR-375 overexpression inhibited proliferation but promoted apoptosis in P19 cells, and the associated mRNAs and proteins were decreased during differentiation. miR-375 has an important role in cardiomyocyte differentiation, and can disrupt this process via the Notch signaling pathway. The present findings contribute to the understanding of the mechanisms of congenital heart disease and facilitate the development of new gene therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.