Abstract
IntroductionmiRNAs are very important regulators in biological processes such as development, cellular differentiation, and carcinogenesis. Given the important role of miRNAs in tumorigenesis and development, it is worth investigating whether some miRNAs play roles in the anticancer mechanism of flavonoids. However, such a role has not yet been reported. We previously selected the promising anticancer agent 3,6-dihydroxyflavone (3,6-DHF) in pharmacodynamic experiments, which may serve as a leading compound for developing more potent anticancer drugs or chemopreventive supplements. The present study aims to investigate the chemopreventive activities of 3,6-DHF against mammary carcinogenesis.MethodsThe experimental model of breast carcinogenesis was developed by intraperitoneal injection of 1-methyl-1-nitrosourea (MNU). The bioavailability of 3,6-DHF in rats was detected by HPLC. The expression of microRNA-34a (miR-34a) and microRNA-21 (miR-21) was evaluated by real-time quantitative RT-PCR. Cell apoptosis was analyzed by flow cytometry or terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The mitochondrial membrane potential was assayed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide dye by confocal laser scanning microscopy. The level of cytochrome C in cytosol was evaluated by western blotting.ResultsOur study showed that oral administration of 3,6-DHF effectively suppressed MNU-induced breast carcinogenesis in rats, decreasing the cancer incidence by 35.7%. The detection of bioavailability indicated that the concentration of 3,6-DHF was 2.5 ± 0.4 μg/ml in plasma of rats within 2 hours after administration, and was 21.7 ± 3.8 μg/ml in urine within 24 hours. Oral administration of 3,6-DHF to BALB/c nude mice bearing breast cancer cell xenografts also significantly suppressed tumor growth in vivo. Furthermore, our study revealed that the global upregulation of miR-21 and downregulation of miR-34a in breast carcinogenesis could be reversed by 3,6-DHF, which significantly upregulated miR-34a expression and decreased miR-21 expression - inducing apoptosis of breast cancer cells in vitro and in vivo. Overexpression of miR-34a induced by plasmid transfection or inhibition of miR-21 by oligonucleotides markedly promoted the pro-apoptotic effect of 3,6-DHF. Inactivation of miR-34a or overproduction of miR-21 compromised the anticancer effects of 3,6-DHF.ConclusionThese findings indicate that 3,6-DHF is a potent natural chemopreventive agent, and that miR-34a and miR-21 play roles in MNU-induced breast carcinogenesis and the anticancer mechanism of flavonoids.
Highlights
MiRNAs are very important regulators in biological processes such as development, cellular differentiation, and carcinogenesis
Our study showed that oral administration of 3,6-DHF effectively suppressed MNU-induced breast carcinogenesis in rats, decreasing the cancer incidence by 35.7%
Our study revealed that the global upregulation of miR-21 and downregulation of miR-34a in breast carcinogenesis could be reversed by 3,6-DHF, which significantly upregulated miR-34a expression and decreased miR-21 expression - inducing apoptosis of breast cancer cells in vitro and in vivo
Summary
MiRNAs are very important regulators in biological processes such as development, cellular differentiation, and carcinogenesis. Given the important role of miRNAs in tumorigenesis and development, it is worth investigating whether some miRNAs play roles in the anticancer mechanism of flavonoids. Such a role has not yet been reported. Understanding the signaling pathways involved in breast carcinogenesis is important for the development of more effective tumor prevention and therapies. Some miRNAs have been identified from cancers and appear to play crucial roles in proliferation, differentiation, and apoptosis [3,4,5]. More studies are needed to define the functional role of miR-21 in breast tumorigenesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.