Abstract

Cervical cancer is the second most common gynecological cancer worldwide and remains as one of the leading causes of cancer-related death among women. Despite great progress in the treatment of cervical cancer, the 5-year overall survival rate for patients with this disease remains unsatisfactory. Over the past decade, an increasing number of studies indicate a central role for microRNAs in the initiation and progression of cervical cancer. microRNA‑329-3p (miR-329-3p) has been studied in many types of human cancer; however, the expression level, biological role and the underlying mechanism of miR-329-3p in cervical cancer has not yet been investigated. In the present study, we found that the expression levels of miR-329-3p were reduced in both cervical cancer tissues and cell lines. Low miR-329-3p expression was negatively correlated with histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, and lymph node metastasis of cervical cancer patients. In addition, upregulation of miR‑329-3p suppressed cell proliferation, migration and invasion of cervical cancer. Furthermore, MAPK1 was identified as a direct target gene of miR-329-3p. MAPK1 was significantly upregulated in cervical cancer tissues and was inversely correlated with miR-329-3p expression in the cervical cancer tissues. Silencing of MAPK1 by RNA interference mimicked the effects of miR-329-3p overexpression on cell proliferation, migration and invasion in cervical cancer. Moreover, rescue experiments showed that restoration of the expression of MAPK1 reversed the effects of miR‑329-3p overexpression in cervical cancer cells. Taken together, these findings suggest that miR-329-3p has a critical tumor-suppressive roles by directly targeting MAPK1 in cervical cancer, and it may be investigated as a novel therapeutic target for the treatment of patients with this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call