Abstract

Parkinson's disease (PD), one of the motor system disorders, is characterized by the loss of dopamine-producing brain cells. Accumulating evidence has highlighted the involvement of microRNAs (miRs) in the development and progression of PD. Hence, we aimed at exploring possible effects of miR-326 on the progression of PD in mice in an attempt to elucidate the underlying mechanism associated with the kallikrein-related peptidase 7 (KLK7)-mediated mitogen-activated protein kinase (MAPK) signaling pathway. In order to identify the regulatory relationship between miR-326 and KLK7 and its biological significance in PD, PD mouse models were established and subsequently treated with mimics or inhibitors of miR-326 or siRNA-KLK7. The content of striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyrosine (3-MT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA); positive expression of tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS); and the levels of IL-1, IL-6, TNF-α, INF-γ, and MAPK signaling pathway-related genes were determined accordingly. The results obtained indicated that KLK7 was negatively targeted by miR-326, with lower miR-326 and higher KLK7 detected among PD mice. The overexpression of miR-326 or silencing of KLK7 was demonstrated to increase the content of DA, DOPAC, HVA, 3-MT, SOD, GSH-Px, and TH positive expression, while reducing iNOS positive expression, MDA content and cell apoptosis, as well as inhibited levels of IL-1, IL-6, TNF-α, INF-γ, and mRNA and protein levels of p38, ERK, JNK, and caspase-3. Taken together, these results provided evidence suggesting that miR-326 could inhibit iNOS activation and apoptosis of dopaminergic neurons through inhibiting the MAPK signaling pathway and negatively regulating KLK7 in mice with PD. These findings highlight the potential of miR-326 as a novel target for future PD treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.