Abstract

MicroRNA319 (miR319) has been implicated in leaf development in a number of plant species. Here we study the roles of miR319a and its regulated network in leaf development in poplars. Over-expression of miR319a in Populus alba × Populus glandulosa caused dwarf statures, narrow leaf blades and serrated leaf margins. The vascular bundles and bundle sheaths in transgenic leaves had more layers of cells than those in the leaves of control plants, indicating enhanced lignification in these cells. Among the 93 putative targets of miR319a predicted with the psRNATarget tool, only three genes, TCP (TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR), were differentially expressed in the leaves of MIR319a-over-expression transgenic lines. With the RNA-seq data sets from multiple MIR319a over-expression transgenic lines, we built a three-layered gene regulatory network mediated by miR319a using Top-down graphic Gaussian model (GGM) algorithm that is capable of capturing causal relationships from transcriptomic data. The results support that miR319a primarily regulates the lignin biosynthesis, leaf development and differentiation as well as photosynthesis via miR319-MEE35/TCP4, miR319-TCP2 and miR319-TCP2-1 regulatory modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.