Abstract

MicroRNA (miRNA) machinery regulates cancer cell behavior, and has been implicated in patients' clinical status and prognosis. We found that microRNA-29b (miR-29b) increased significantly in advanced migratory cells. However, miR-29b controls the migration ability, and its regulatory mechanism in oral squamous cell carcinoma (OSCC) remains unknown. We triggered miR-29b expression in OSCC patients and cell lines by conducting real-time quantitative PCR. We determined the functions of miR-29b in the migration of OSCC cells by using gain- and loss-of-function approaches. We elevated the target genes of miR29b through software predictions and a luciferase report assay. We used an orthotopic OSCC animal model to investigate the effects of miR29b on OSCC cell metastasis in vivo. The clinical data revealed that miR-29b expression was correlated with lymph node metastasis and an advanced tumor stage in 98 OSCC patients. Furthermore, multivariate analysis revealed that miR-29b expression was significantly correlated with recurrence, and indicated poor survival. MiR-29b promoted OSCC cell migration and downregulated CX3CL1, a cell-cell adhesion regulator, which plays an essential role in miR-29b-regulated OSCC cell migration machinery. Furthermore, we found that CX3CL1 expression was correlated with lymph node metastasis and an early tumor stage in OSCC patients, and negatively correlated with miR-29b expression. MiR-29b acts as an oncomir, promoting cell migration through CX3CL1 suppression, and could be a potential therapeutic target for preventing OSCC progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call