Abstract

BackgroundOsteosarcoma is the most common primary malignant tumor of bone. However, the underlying pathogenic mechanisms are still unclear. miR-26a was an endogenous non-coding small RNAs that have been showed to play a critical role in regulating varieties of biological and pathological processes. In this study, we will investigate the function of miR-26a-5p in osteosarcoma cells.MethodsIn this study, we explored the role of miR-26a-5p in osteosarcoma cell lines using qPCR, detected the proliferation, cell cycle and cell migration by CCK-8, PI and transwell.ResultsWe found that compared with noncancerous cells, miR-26a-5p was highly expressed in osteosarcoma cell lines, especially in U2OS cells. Overexpression of miR-26a-5p promotes cell proliferation, cell cycle, and cell migration, but inhibits cell apoptosis. But down-regulation of miR-26a-5p in U2OS cells exhibits opposite effects. We also confirmed that miR-26a-5p directly targets HOXA5 in U2OS cells. Overexpression of HOXA5 reversed the effect of miR-26a-5p on cell proliferation, migration, and apoptosis. Besides, we showed in that knock-down of miR-26a-5p or overexpression of HOXA5 increased cell sensitivity to chemotherapeutic drug paclitaxel.ConclusionThese findings indicate that highly expressed miR-26a-5p in osteosarcoma cells, and promotes proliferation and migration, but inhibits apoptosis of osteosarcoma cells by targeting HOXA5 which suggest that miR-26a-5p could serve as a novel therapeutic target for osteosarcoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call