Abstract
Mesenchymal stem cells (MSCs) have been largely used for their immunomodulatory and regenerative properties in the treatment of immune-based disorders and bacterial infections. This study explores the function of MSC-derived extracellular vesicles (MSC-EVs) in alveolar epithelial type II cells (AECII) against Mycobacterium tuberculosis (MTB) infection. EVs were extracted from the acquired MSCs. AECII-like MLE-15 and A549 cells were treated with MSC-EVs and then subjected to MTB infection. MSC-EVs treatment significantly prevented the increase in bacterial load, and it prevented the production of proinflammatory cytokines in cells induced by MTB infection. MicroRNA-20b (miR-20b) was upregulated in cells after MSC-EVs treatment. Artificial inhibition of miR-20b blocked the protective effects of MSC-EVs against MTB infection. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to analyze the key molecules involved in the immune regulation in cells mediated by miR-20b. miR-20b directly targeted nuclear factor of activated T cells 5 (NFAT5) and inactivated the Toll-Like Receptor (TLR) signaling pathway by reducing the formation of TLR2-TLR4 dimer after MTB infection. In conclusion, this study suggests that MSC-EVs carry miR-20b to inhibit NFAT5 and inactivate the TLR signaling pathway, thus mediating innate immune response and preventing AECII from MTB infection-induced damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.