Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microRNA 205 (miR-205) in cisplatin-induced renal cell apoptosis and explored the molecular mechanisms. The chronic interstitial nephropathy rat model was induced, and the miRNA expression profile in the kidney cells from rats with CKD was screened. Cisplatin-induced apoptosis in normal renal HK-2 cells was evaluated using flow cytometry, and regulation of miR-205 on target gene was validated using luciferase assay, western blot and real time PCR assays. We found that miR-205 expression was significantly decreased in the cells from kidney of CKD rat (P<0.01). Our data showed that when miR-205 was overexpressed or silenced using the mimic or inhibitor, the percentages of apoptotic cells were suppressed or increased significantly (P<0.05), respectively. Moreover, we have identified CMTM4 gene, which is involved in cell proliferation and apoptosis, as a novel target for miR-205. In addition, miR-205 could inhibit apoptosis by binding to the 3'UTR of CMTM4 mRNA and inhibiting its transcriptional activity. This study elucidated that miR-205 plays an important role in the regulation of apoptosis in renal cells, suggesting a potential therapeutic target to hinder CKD development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call