Abstract

ABSTRACT MicroRNAs (miRNAs) have been reported to serve pivotal roles in the regulation of papillary thyroid cancer (PTC) development; thus, the aim of this study is to identify the impact of miR-203 and AKT3 on the epithelial–mesenchymal transition (EMT), migration and invasion of PTC. MiR-203 and AKT3 expression in PTC tissues and cells were tested. TPC-1 cells and K1 cells were screened for follow-up experiments. Apoptosis-related proteins (Bcl-2 and Bax), EMT-related proteins (Vimentin and E-cadherin), proliferation-associated proteins (Ki67 and CDK4), invasion- and migration-related protein (MMP-2 and MMP-9) were verified. The effects of upregulated miR-203 and downregulated AKT3 on the biological characteristics of PTC cells in each group were detected via the gain- and loss-of-function assays. The targeting relationship between miR-203 and AKT3 was verified.MiR-203 expression declined and AKT3 heightened in PTC tissues and cells. Upregulated miR-203 and downregulated AKT3 reduced the tumor volume and weight, suppressed cell migration, colony formation, proliferation, invasion, proliferation-associated proteins (Ki67 and CDK4), invasion- and migration-related protein (MMP-2 and MMP-9) and promoted cell apoptosis, raised E-cadherin and decreased Vimentin protein expression in TPC-1 cells. On the contrary, the K1 cells with the downregulated miR-203 or upregulated AKT3 exhibited an opposite result. This study suggests that upregulated miR-203 suppresses EMT, invasion, proliferation and migration as well as induces apoptosis of PTC cells via downregulated AKT3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call