Abstract

The ERK signaling pathway is frequently deregulated in tumorigenesis, mostly by classical mechanisms such as gene mutation of its components (eg, RAS and RAF). However, whether and how multiple key components of ERK pathway are regulated by microRNAs are not clear. We firstly predicted post-transcriptional regulation of multiple key components of the ERK signaling pathway by miR181c through bioinformatics analysis, and then confirmed the post-transcriptional regulation by dual luciferase reporter gene assays and Western blot analysis. The biological effects of miR181c on prostate cancer cell proliferation, apoptosis, migration, and invasion were measured by CCK-8 assay, flow cytometry, wound scratch assay, transwell cell migration, and invasion assays. miR181c post-transcriptionally regulated multiple key members of the ERK signaling pathway, including extracellular signal-regulated kinase 2 (ERK2), ribosomal S6 kinase 2 (RSK2), serum response factor (SRF), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Ectopic expression of miR181c mimics effectively suppressed prostate cancer cell proliferation, migration, and invasion, but promoted cell apoptosis. Furthermore, miR181c treatment combined with the multi-kinase inhibitor sorafenib significantly enhanced these anti-tumor effects. Downregulation of miR181c results in deregulated ERK signaling and promotes prostate cancer cell growth and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.