Abstract

BackgroundEstrogen synthesis is an important function of the mammalian ovary. Estrogen plays important roles in many biological processes, including follicular development, oocyte maturation and endometrial proliferation, and dysfunctions in estrogen synthesis contribute to the development of polycystic ovary syndrome and premature ovarian failure. Classical signaling cascades triggered by follicle-stimulating hormone induce estrogen synthesis via the upregulation of Cyp19a1 in granulosa cells (GCs). This study aimed to determine the effect of microRNA-132 (miR-132) on estradiol synthesis in GCs.MethodsPrimary mouse GCs were collected from ovaries of 21-day-old immature ICR mice through follicle puncture. GCs were cultured and treated with the stable cyclic adenosine monophosphate analog 8-Br-cAMP or transfected with miR-132 mimics, Nurr1-specific small interfering RNA oligonucleotides and Flag-Nurr1 plasmids. Concentrations of estradiol and progesterone in culture medium were determined by an automated chemiluminescence-based assay. Quantitative real time PCR and western blot were performed to identify the effect of miR-132 on Cyp19a1, Cyp11a1 and an orphan nuclear receptor-Nurr1 expression in GCs. Direct suppression of Nurr1 via its 3'-untranslated region by miR-132 were further verified using luciferase reporter assays.ResultsThe expression level of miR-132 in cultured mouse GCs was significantly elevated during 48 h of treatment with 8-Br-cAMP. The synthesis of estradiol increased after the overexpression of miR-132 in mouse GCs. The real-time PCR results demonstrated that miR-132 induced the expression of Cyp19a1 significantly. Nurr1, an orphan nuclear receptor that suppresses Cyp19a1 expression, was found to be a direct target of miR-132. Nurr1 was suppressed by miR-132, as indicated by a luciferase assay and Western blotting. The knockdown of Nurr1 primarily elevated the synthesis of estradiol and partially attenuated the miR-132-induced estradiol elevation, and the ectopic expression of Flag-Nurr1 abrogated the stimulatory effect of miR-132 on estradiol synthesis in mouse GCs.ConclusionsOur findings suggest that miR-132 is involved in the cAMP signaling pathway and promotes estradiol synthesis via the translational repression of Nurr1 in ovarian GCs.

Highlights

  • Estrogen synthesis is an important function of the mammalian ovary

  • FSH to its receptor (FSHR) expression showed that our in vitro cultured primary mouse granulosa cells (mGCs) can maintain an estrogenic stage and can be used for further study of E2 synthesis

  • To test the specificity of anti-FSHR antibody, we did immunohistochemistry to show that our primary anti-FSHR antibody exclusively detected FSHR mainly in the mGCs at various stages of follicular development

Read more

Summary

Introduction

Estrogen plays important roles in many biological processes, including follicular development, oocyte maturation and endometrial proliferation, and dysfunctions in estrogen synthesis contribute to the development of polycystic ovary syndrome and premature ovarian failure. Classical signaling cascades triggered by follicle-stimulating hormone induce estrogen synthesis via the upregulation of Cyp19a1 in granulosa cells (GCs). Follicle-stimulating hormone (FSH) is a glycoprotein hormone that is produced by the anterior pituitary gland This gonadotropin plays an essential role in steroidogenesis of ovarian GCs. The binding of FSH to its receptor (FSHR) on the surface of GCs in immature preantral follicles activates the effector adenylyl cyclase, which leads to the synthesis and upregulation of the intracellular second messenger cyclic adenosine monophosphate (cAMP) [6]. Besides classical regulations in the FSH pathway, epigenetic mechanisms remain to be elucidated, which will increase our understanding of ovarian physiology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call