Abstract

Granulosa cells (GCs) are essential somatic cells in the ovaries, and apoptosis of GCs causes follicular atresia. microRNA-10b (miR-10b) is pivotal for cell apoptosis. However, currently, little is known about the role of miR-10b in bovine ovarian GCs (BGCs). In this study, the effect of miR-10b on the apoptosis of BGCs was investigated. Our results showed that the overexpression of miR-10b could increase the apoptosis rate of BGCs, which is associated with the increased expression of Caspase-3 and decreased expression ratio of Bcl-2/Bax (P < 0.05). Furthermore, plasminogen activator inhibitor-1 (PAI-1) was confirmed to be a validated target of miR-10b in BGCs using dual-luciferase reporter analysis, and transfection of miR-10b mimics decreased the expression of PAI-1 (P < 0.05). In addition, overexpression of PAI-1 significantly inhibited BGC apoptosis (P < 0.05), and PAI-1 could alleviate BGC apoptosis induced by miR-10b (P < 0.05). Subsequently, phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) was found to be the downstream pathway of PAI-1 by RNA-Seq analysis and verified by Western blot. Finally, a PI3K/AKT inhibitor (Miltefosine) was used to inhibit the PI3K/AKT pathway, which reversed the inhibitory effect of PAI-1 on the apoptosis of BGCs (P < 0.05), and enhanced the promotion effect of miR-10b on the apoptosis of BGCs (P < 0.05). Our results indicated that miR-10b promotes BGC apoptosis by targeting PAI-1 to regulate the PI3K/AKT pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call