Abstract

Although it is well known that exaggerated proliferation, metastasis and the mesenchymal subtype is related with worst prognoses in glioblastoma (GBM) and that transforming growth factor-β1 (TGF-β1) is a potent factor in regulating the proliferation, migration and epithelial-mesenchymal transition (EMT) phenotype of GBM, the detailed mechanisms are still far from elucidated. MicroRNAs (miRNAs) are small non-coding RNAs which play critical roles in various diseases by regulating target gene expression. We report that miR-10b, a molecule downstream of TGF-β1, is involved in TGF-β1-regulated GBM cell proliferation, migration and EMT. We found that exposure of GBM cells to TGF-β1 significantly upregulated miR-10b expression. Overexpression of miR-10b promotes GBM cell proliferation, migration and EMT, whereas depletion of miR-10b obtained reverse effects. Further studies uncovered that some tumor-associated genes including epithelial cadherin (E-cadherin), apoptotic protease activating factor1 (Apaf-1) and phosphatase and tensin homolog (PTEN) are target genes of miR-10b. In human GBM xenografts, antagomiR directed against miR-10b markedly suppressed tumor growth, and the tumor volume shrunk from 1252.5±285 to 873.4±205mm3 after antagomiR‑10b treatment for 3 weeks compared with the control group (P<0.01). Taken together, our data collectively demonstrate that the proliferation, migration and EMT features of GBM cells can be regulated by TGF-β1 stimulation through controlling miR-10b. Thus, our findings provide a rationale for targeting TGF-β1 or miR-10b for the treatment of GBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.