Abstract

AimsMicroRNA-1 (miR-1) has been demonstrated as a tumor-suppressive miRNA, which shows a down-regulated pattern in several human malignancies including hepatocellular carcinoma (HCC). However, the pathophysiologic roles of miR-1 and their mechanisms in HCC tumorigenesis are still not totally elucidated. Main methodsPre-miR-1 was cloned into pSuper plasmid to overexpress the miR-1 in hepatoma cells. Real-time PCR and Western blot were applied to detect miR-1, ET-1 mRNA and protein levels respectively. Dual luciferase reporter assay was conducted to investigate the binding site of miR-1 on 3′UTR of ET-1 mRNA. Proliferation of hepatoma cells was evaluated by MTT assay. Key findingsWe observed that over-expression of miR-1 by miRNA-expressing plasmid transfection in HepG2 and Hep3B cells significantly reduced the proliferation of these cells. To explore the mechanism, we examined the potential target genes of miR-1 by bioinformatics. A potent mitogen, Endothelin-1 (ET-1), attracted our attention. Elevated expression of ET-1 but reduced miR-1 level was detected both in human liver cancer tissues and in hepatoma cell lines using Western Blot and miRNA real-time PCR respectively. By the over-expression and inhibition of miR-1 in HepG2 and Hep3B, we confirmed that miR-1 negatively regulated ET-1 expression in hepatoma cells. A luciferase reporter assay showed that miR-1 regulation was established by pairing to a complementary binding site within the ET-1 3′UTR. Finally, attenuated proliferation of hepatoma cells by over-expression of miR-1 could be partially restored by exogenous ET-1 treatment. SignificanceOur findings demonstrate that miR-1 could inhibit ET-1 expression to attenuate the proliferation of hepatoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.