Abstract
Significance: Reactive oxygen species (ROS) production occurs primarily in the mitochondria as a by-product of cellular metabolism. ROS are also produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in response to growth factors and cytokines by normal physiological signaling pathways. NADPH oxidase, a member of NADPH oxidase (NOX) family, utilizes molecular oxygen (O2) to generate ROS such as hydrogen peroxide and superoxide. Imbalance between ROS production and its elimination is known to be the major cause of various human diseases. NOX family proteins are exclusively involved in ROS production, which makes them attractive target(s) for the treatment of ROS-mediated diseases including cancer. Recent Advances: Molecules such as Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2), N-methyl-d-aspartic acid (NMDA) receptors, nuclear factor-kappaB, KRAS, kallistatin, gene associated with retinoic-interferon-induced mortality-19, and deregulated metabolic pathways are involved in ROS production in association with NADPH oxidase. Critical Issues: Therapeutic strategies targeting NADPH oxidases in ROS-driven cancers are not very effective due to its complex regulatory circuit. Tumor suppressor microRNAs (miRNAs) viz. miR-34a, miR-137, miR-99a, and miR-21a-3p targeting NADPH oxidases are predominantly downregulated in ROS-driven cancers. miRNAs also regulate other cellular machineries such as Keap1/Nrf2 pathway and NMDA receptors involved in ROS production and consequently drug resistance. Here, we discuss the structure, function, and metabolic role of NADPH oxidase, NOX family protein-protein interaction, their association with other pathways, and NADPH oxidase alteration by miRNAs. Moreover, we also discuss and summarize studies on NADPH oxidase associated with various malignancies and their therapeutic implications. Future Directions: Targeting NADPH oxidases through miRNAs appears to be a promising strategy for the treatment of ROS-driven cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.